Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats.
نویسندگان
چکیده
Sotos syndrome (Sos) is an overgrowth disorder also characterized clinically by mental retardation, specific craniofacial features and advanced bone age. As NSD1 haploinsufficiency was determined in 2002 to be the major cause of Sos, many intragenic mutations and chromosomal microdeletions involving the entire NSD1 gene have been described. In the Japanese population, half of the cases analyzed appear to have a common microdeletion; however, in the European population, deletion cases account for only 9%. Blast analysis of the Sos genomic region on 5q35 revealed two complex mosaic low-copy repeats (LCRs) that are centromeric and telomeric to NSD1. We termed these proximal Sos-REP (Sos-PREP, approximately 390 kb) and distal Sos-REP (Sos-DREP, approximately 429 kb), respectively. On the basis of the analysis of DNA sequence, we determined the size, structure, orientation and extent of sequence identity of these LCRs. We found that Sos-PREP and Sos-DREP are composed of six subunits termed A-F. Each of the homologous subunits, with the exception of one, is located in an inverted orientation and the order of subunits is different between the two Sos-REPs. Only the subunit C' in Sos-DREP is oriented directly with respect to the subunit C in Sos-PREP. These latter C' and C subunits are greater than 99% identical. Using pulsed-field gel electrophoresis analysis in eight Sos patients with a common deletion, we detected an approximately 550 kb junction fragment that we predicted according to the non-allelic homologous recombination (NAHR) mechanism using directly oriented Sos-PREP C and Sos-DREP C' subunits as substrates. This patient specific junction fragment was not present in 51 Japanese and non-Japanese controls. Subsequently, using long-range PCR with restriction enzyme digestion and DNA sequencing, we identified a 2.5 kb unequal crossover hotspot region in six out of nine analyzed Sos patients with the common deletion. Our data are consistent with an NAHR mechanism for generation of the Sos common deletion.
منابع مشابه
A rare case of a boy with de novo microduplication at 5q35.2q35.3 from central Brazil.
Genomic disorders are genetic diseases that are caused by rearrangements of chromosomal material via deletions, duplications, and inversions of unique genomic segments at specific regions. Such rearrangements could result from recurrent non-allelic homologous recombination between low copy repeats. In cases where the breakpoints flank the low copy repeats, deletion of chromosomal segments is of...
متن کاملCopy number variation at the breakpoint region of isochromosome 17q.
Isochromosome 17q, or i(17q), is one of the most frequent nonrandom changes occurring in human neoplasia. Most of the i(17q) breakpoints cluster within a approximately 240-kb interval located in the Smith-Magenis syndrome common deletion region in 17p11.2. The breakpoint cluster region is characterized by a complex architecture with large ( approximately 38-49 kb), inverted and directly oriente...
متن کاملPrimate origin of the CMT1A-REP repeat and analysis of a putative transposon-associated recombinational hotspot.
The CMT1A-REP repeat on chromosome 17p11.2-12 is proposed to mediate misalignment and meiotic unequal crossover leading to a 1.5 Mb pair duplication associated with Charcot-Marie-Tooth neuropathy type 1A (CMT1A) and a reciprocal deletion associated with hereditary neuropathy with liability to pressure palsies (HNPP). Restriction enzyme endonuclease mapping indicated that the size of the CMT1A-R...
متن کاملComparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is resp...
متن کاملMultiple mechanisms are implicated in the generation of 5q35 microdeletions in Sotos syndrome.
BACKGROUND Sotos syndrome is characterised by learning difficulties, overgrowth, and a typical facial appearance. Microdeletions at 5q35.3, encompassing NSD1, are responsible for approximately 10% of non-Japanese cases of Sotos. In contrast, a recurrent approximately 2 Mb microdeletion has been reported as responsible for approximately 50% of Japanese cases of Sotos. METHODS We screened 471 c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2005